Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.258
Filtrar
1.
J Virol ; 98(3): e0192123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38319104

RESUMO

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE: Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.


Assuntos
Aptidão Genética , Hepacivirus , Hepatócitos , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Mutação , Humanos , Células Cultivadas , Estresse do Retículo Endoplasmático , Aptidão Genética/genética , Aptidão Genética/imunologia , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/imunologia , Hepacivirus/fisiologia , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , MicroRNAs/metabolismo , Inoculações Seriadas , Resposta a Proteínas não Dobradas , Tropismo Viral , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Replicação Viral/genética , Replicação Viral/imunologia
2.
J Virol ; 97(10): e0109023, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787533

RESUMO

IMPORTANCE: Clinical data suggest that Hepatitis C virus (HCV) levels are generally lower in Hepatitis B virus (HBV) co-infected patients, but the mechanism is unknown. Here, we show that HBV, but not HCV, activated absent in melanoma-2. This in turn results in inflammasome-mediated cleavage of pro-IL-18, leading to an innate immune activation cascade that results in increased interferon-γ, suppressing both viruses.


Assuntos
Coinfecção , Proteínas de Ligação a DNA , Hepacivirus , Vírus da Hepatite B , Hepatite B , Hepatite C , Imunidade Inata , Humanos , Coinfecção/imunologia , Coinfecção/virologia , Proteínas de Ligação a DNA/metabolismo , Hepacivirus/imunologia , Hepatite B/complicações , Hepatite B/imunologia , Hepatite B/virologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Hepatite C/complicações , Hepatite C/imunologia , Hepatite C/virologia , Inflamassomos/metabolismo , Interferon gama/imunologia
3.
Nature ; 619(7971): 811-818, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407817

RESUMO

RNA viruses have evolved elaborate strategies to protect their genomes, including 5' capping. However, until now no RNA 5' cap has been identified for hepatitis C virus1,2 (HCV), which causes chronic infection, liver cirrhosis and cancer3. Here we demonstrate that the cellular metabolite flavin adenine dinucleotide (FAD) is used as a non-canonical initiating nucleotide by the viral RNA-dependent RNA polymerase, resulting in a 5'-FAD cap on the HCV RNA. The HCV FAD-capping frequency is around 75%, which is the highest observed for any RNA metabolite cap across all kingdoms of life4-8. FAD capping is conserved among HCV isolates for the replication-intermediate negative strand and partially for the positive strand. It is also observed in vivo on HCV RNA isolated from patient samples and from the liver and serum of a human liver chimeric mouse model. Furthermore, we show that 5'-FAD capping protects RNA from RIG-I mediated innate immune recognition but does not stabilize the HCV RNA. These results establish capping with cellular metabolites as a novel viral RNA-capping strategy, which could be used by other viruses and affect anti-viral treatment outcomes and persistence of infection.


Assuntos
Flavina-Adenina Dinucleotídeo , Hepacivirus , Capuzes de RNA , RNA Viral , Animais , Humanos , Camundongos , Quimera/virologia , Flavina-Adenina Dinucleotídeo/metabolismo , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/virologia , Reconhecimento da Imunidade Inata , Fígado/virologia , Estabilidade de RNA , RNA Viral/química , RNA Viral/genética , RNA Viral/imunologia , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/genética , Capuzes de RNA/metabolismo
4.
Science ; 380(6640): 37-38, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023205
5.
J Virol ; 97(4): e0181222, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971565

RESUMO

The lack of robust immunocompetent animal models for hepatitis C virus (HCV) impedes vaccine development and studies of immune responses. Norway rat hepacivirus (NrHV) infection in rats shares HCV-defining characteristics, including hepatotropism, chronicity, immune responses, and aspects of liver pathology. To exploit genetic variants and research tools, we previously adapted NrHV to prolonged infection in laboratory mice. Through intrahepatic RNA inoculation of molecular clones of the identified variants, we here characterized four mutations in the envelope proteins responsible for mouse adaptation, including one disrupting a glycosylation site. These mutations led to high-titer viremia, similar to that observed in rats. In 4-week-old mice, infection was cleared after around 5 weeks compared to 2 to 3 weeks for nonadapted virus. In contrast, the mutations led to persistent but attenuated infection in rats, and they partially reverted, accompanied by an increase in viremia. Attenuated infection in rat but not mouse hepatoma cells demonstrated that the characterized mutations were indeed mouse adaptive rather than generally adaptive across species and that species determinants and not immune interactions were responsible for attenuation in rats. Unlike persistent NrHV infection in rats, acute resolving infection in mice was not associated with the development of neutralizing antibodies. Finally, infection of scavenger receptor B-I (SR-BI) knockout mice suggested that adaptation to mouse SR-BI was not a primary function of the identified mutations. Rather, the virus may have adapted to lower dependency on SR-BI, thereby potentially surpassing species-specific differences. In conclusion, we identified specific determinants of NrHV mouse adaptation, suggesting species-specific interactions during entry. IMPORTANCE A prophylactic vaccine is required to achieve the World Health Organization's objective for hepatitis C virus elimination as a serious public health threat. However, the lack of robust immunocompetent animal models supporting hepatitis C virus infection impedes vaccine development as well as studies of immune responses and viral evasion. Hepatitis C virus-related hepaciviruses were discovered in a number of animal species and provide useful surrogate infection models. Norway rat hepacivirus is of particular interest, as it enables studies in rats, an immunocompetent and widely used small laboratory animal model. Its adaptation to robust infection also in laboratory mice provides access to a broader set of mouse genetic lines and comprehensive research tools. The presented mouse-adapted infectious clones will be of utility for reverse genetic studies, and the Norway rat hepacivirus mouse model will facilitate studies of hepacivirus infection for in-depth characterization of virus-host interactions, immune responses, and liver pathology.


Assuntos
Adaptação Fisiológica , Hepacivirus , Hepatite C , Adaptação Fisiológica/genética , Adaptação Fisiológica/imunologia , Hepacivirus/genética , Hepacivirus/imunologia , Viremia/imunologia , Viremia/virologia , Mutação , Animais , Camundongos , Ratos , Hepatite C/imunologia , Hepatite C/fisiopatologia , Hepatite C/virologia , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Linhagem Celular , Antígenos CD36/genética , Antígenos CD36/imunologia
6.
Science ; 378(6617): 263-269, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36264808

RESUMO

Hepatitis C virus (HCV) infection is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma in humans and afflicts more than 58 million people worldwide. The HCV envelope E1 and E2 glycoproteins are essential for viral entry and comprise the primary antigenic target for neutralizing antibody responses. The molecular mechanisms of E1E2 assembly, as well as how the E1E2 heterodimer binds broadly neutralizing antibodies, remain elusive. Here, we present the cryo-electron microscopy structure of the membrane-extracted full-length E1E2 heterodimer in complex with three broadly neutralizing antibodies-AR4A, AT1209, and IGH505-at ~3.5-angstrom resolution. We resolve the interface between the E1 and E2 ectodomains and deliver a blueprint for the rational design of vaccine immunogens and antiviral drugs.


Assuntos
Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Humanos , Antivirais/química , Anticorpos Amplamente Neutralizantes , Microscopia Crioeletrônica , Hepacivirus/química , Hepacivirus/imunologia , Hepatite C/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Multimerização Proteica , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
7.
Viruses ; 14(2)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35215812

RESUMO

The role of non-parenchymal liver cells as part of the hepatic, innate immune system in the defense against hepatotropic viruses is not well understood. Here, primary human Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells were isolated from liver tissue obtained after tumor resections or liver transplantations. Cells were stimulated with Toll-like receptor 1-9 ligands for 6-24 h. Non-parenchymal liver cells expressed and secreted inflammatory cytokines (IL6, TNF and IL10). Toll-like receptor- and cell type-specific downstream signals included the phosphorylation of NF-κB, AKT, JNK, p38 and ERK1/2. However, only supernatants of TLR3-activated Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells contained type I and type III interferons and mediated an antiviral activity in the interferon-sensitive subgenomic hepatitis C virus replicon system. The antiviral effect could not be neutralized by antibodies against IFNA, IFNB nor IFNL, but could be abrogated using an interferon alpha receptor 2-specific neutralization. Interestingly, TLR3 responsiveness was enhanced in liver sinusoidal endothelial cells isolated from hepatitis C virus-positive donors, compared to uninfected controls. In conclusion, non-parenchymal liver cells are potent activators of the hepatic immune system by mediating inflammatory responses. Furthermore, liver sinusoidal endothelial cells were identified to be hyperresponsive to viral stimuli in chronic hepatitis C virus infection.


Assuntos
Hepacivirus/fisiologia , Hepatite C Crônica/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Células Endoteliais/imunologia , Células Endoteliais/virologia , Hepacivirus/genética , Hepacivirus/imunologia , Células Estreladas do Fígado/imunologia , Células Estreladas do Fígado/virologia , Hepatite C Crônica/genética , Hepatite C Crônica/virologia , Humanos , Interferons/genética , Interferons/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Células de Kupffer/imunologia , Células de Kupffer/virologia , Fígado/imunologia , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 3 Toll-Like/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
8.
Viruses ; 14(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35215896

RESUMO

Screening and linkage to care are essential to achieve viral hepatitis elimination before 2030. The accurate identification of endemic areas is important for controlling diseases with geographic aggregation. Viral activity drives prognosis of chronic hepatitis B and hepatitis C virus infection. This screening was conducted in Chiayi County from 2018-2019. All residents aged 30 years or older were invited to participate in quantitative HBsAg (qHBsAg) and HCV Ag screening. Among the 4010 participants (male:female = 1630:2380), the prevalence of qHBsAg and HCV Ag was 9.9% (396/4010) and 4.1% (163/4010), respectively. High-prevalence townships were identified, three for qHBsAg > 15% and two for HCV Ag > 10%. The age-specific prevalence of qHBsAg was distributed in an inverse U-shape with a peak (16.0%, 68/424) for subjects in their 40 s; for HCV, prevalence increased with age. Concentrations of qHBsAg < 200 IU/mL were found in 54% (214/396) of carriers. The rate of oral antiviral treatment for HCV was 75.5% (114/151), with subjects younger than 75 years tending to undergo treatment (85.6% vs. 57.4%, p < 0.001). QHBsAg and HCV Ag core antigens can reflect the concentration of the viral load, which serves as a feasible screening tool. Using quantitative antigen screening for hepatitis B and C in community-based screening, two hyperendemic townships were identified from an endemic county.


Assuntos
Hepacivirus/isolamento & purificação , Antígenos de Hepatite/sangue , Vírus da Hepatite B/isolamento & purificação , Hepatite B/virologia , Hepatite C/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/uso terapêutico , DNA Viral/genética , Feminino , Hepacivirus/classificação , Hepacivirus/genética , Hepacivirus/imunologia , Antígenos de Hepatite/imunologia , Hepatite B/sangue , Hepatite B/tratamento farmacológico , Hepatite B/epidemiologia , Vírus da Hepatite B/classificação , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Hepatite C/sangue , Hepatite C/tratamento farmacológico , Hepatite C/epidemiologia , Humanos , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Prevalência , Taiwan/epidemiologia
9.
Viruses ; 14(2)2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35215901

RESUMO

A hepatitis C virus (HCV) screening and treatment program was conducted in Hungarian prisons on a voluntary basis. After HCV-RNA testing and genotyping for anti-HCV positives, treatments with direct-acting antiviral agents were commenced by hepatologists who visited the institutions monthly. Patients were supervised by the prisons' medical staff. Data were retrospectively collected from the Hungarian Hepatitis Treatment Registry, from the Health Registry of Prisons, and from participating hepatologists. Eighty-four percent of Hungarian prisons participated, meaning a total of 5779 individuals (28% of the inmate population) underwent screening. HCV-RNA positivity was confirmed in 317/5779 cases (5.49%); 261/317 (82.3%) started treatment. Ninety-nine percent of them admitted previous intravenous drug use. So far, 220 patients received full treatment and 41 patients are still on treatment. Based on the available end of treatment (EOT) + 24 weeks timepoint data, per protocol sustained virologic response rate was 96.8%. In conclusion, the Hungarian prison screening and treatment program, with the active participation of hepatologists and the prisons' medical staff, is a well-functioning model. Through the Hungarian experience, we emphasize that the "test-and-treat" principle is feasible and effective at micro-eliminating HCV in prisons, where infection rate, as well as history of intravenous drug usage, are high.


Assuntos
Antivirais/administração & dosagem , Hepacivirus/isolamento & purificação , Hepatite C/tratamento farmacológico , Adolescente , Adulto , Feminino , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/sangue , Hepatite C/diagnóstico , Hepatite C/virologia , Humanos , Hungria , Masculino , Programas de Rastreamento , Pessoa de Meia-Idade , Prisões/estatística & dados numéricos , Estudos Retrospectivos , Resposta Viral Sustentada , Adulto Jovem
10.
PLoS Pathog ; 18(1): e1010179, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990486

RESUMO

Antibodies targeting the hepatitis C virus (HCV) envelope glycoprotein E2 are associated with delayed disease progression, and these antibodies can also facilitate spontaneous clearance of infection in some individuals. However, many infected people demonstrate low titer and delayed anti-E2 antibody responses. Since a goal of HCV vaccine development is induction of high titers of anti-E2 antibodies, it is important to define the mechanisms underlying these suboptimal antibody responses. By staining lymphocytes with a cocktail of soluble E2 (sE2) glycoproteins, we detected HCV E2-specific (sE2+) B cells directly ex vivo at multiple acute infection timepoints in 29 HCV-infected subjects with a wide range of anti-E2 IgG titers, including 17 persistently infected subjects and 12 subjects with spontaneous clearance of infection. We performed multi-dimensional flow cytometric analysis of sE2+ and E2-nonspecific (sE2-) class-switched B cells (csBC). In sE2+ csBC from both persistence and clearance subjects, frequencies of resting memory B cells (rMBC) were reduced, frequencies of activated MBC (actMBC) and tissue-like MBC (tlMBC) were increased, and expression of FCRL5, an IgG receptor, was significantly upregulated. Across all subjects, plasma anti-E2 IgG levels were positively correlated with frequencies of sE2+ rMBC and sE2+ actMBC, while anti-E2 IgG levels were negatively correlated with levels of FCRL5 expression on sE2+ rMBC and PD-1 expression on sE2+ actMBC. Upregulation of FCRL5 on sE2+ rMBC and upregulation of PD-1 on sE2+ actMBC may limit anti-E2 antibody production in vivo. Strategies that limit upregulation of these molecules could potentially generate higher titers of protective antibodies against HCV or other pathogens.


Assuntos
Linfócitos B/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores Fc/imunologia , Hepacivirus/imunologia , Humanos , Proteínas do Envelope Viral/imunologia
11.
Immunity ; 55(2): 341-354.e7, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990590

RESUMO

The high genetic diversity of hepatitis C virus (HCV) complicates effective vaccine development. We screened a cohort of 435 HCV-infected individuals and found that 2%-5% demonstrated outstanding HCV-neutralizing activity. From four of these patients, we isolated 310 HCV antibodies, including neutralizing antibodies with exceptional breadth and potency. High neutralizing activity was enabled by the use of the VH1-69 heavy-chain gene segment, somatic mutations within CDRH1, and CDRH2 hydrophobicity. Structural and mutational analyses revealed an important role for mutations replacing the serines at positions 30 and 31, as well as the presence of neutral and hydrophobic residues at the tip of the CDRH3. Based on these characteristics, we computationally created a de novo antibody with a fully synthetic VH1-69 heavy chain that efficiently neutralized multiple HCV genotypes. Our findings provide a deep understanding of the generation of broadly HCV-neutralizing antibodies that can guide the design of effective vaccine candidates.


Assuntos
Anticorpos Amplamente Neutralizantes/genética , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/genética , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Epitopos , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/química , Anticorpos Anti-Hepatite C/imunologia , Humanos , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
12.
J Virol ; 96(5): e0167521, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34986001

RESUMO

A vaccine to prevent hepatitis C virus (HCV) infection is urgently needed for use alongside direct-acting antiviral drugs to achieve elimination targets. We have previously shown that a soluble recombinant form of the glycoprotein E2 ectodomain (residues 384 to 661) that lacks three variable regions (Δ123) is able to elicit a higher titer of broadly neutralizing antibodies (bNAbs) than the parental form (receptor-binding domain [RBD]). In this study, we engineered a viral nanoparticle that displays HCV glycoprotein E2 on a duck hepatitis B virus (DHBV) small surface antigen (S) scaffold. Four variants of E2-S virus-like particles (VLPs) were constructed: Δ123-S, RBD-S, Δ123A7-S, and RBDA7-S; in the last two, 7 cysteines were replaced with alanines. While all four E2-S variant VLPs display E2 as a surface antigen, the Δ123A7-S and RBDA7-S VLPs were the most efficiently secreted from transfected mammalian cells and displayed epitopes recognized by cross-genotype broadly neutralizing monoclonal antibodies (bNMAbs). Both Δ123A7-S and RBDA7-S VLPs were immunogenic in guinea pigs, generating high titers of antibodies reactive to native E2 and able to prevent the interaction between E2 and the cellular receptor CD81. Four out of eight animals immunized with Δ123A7-S elicited neutralizing antibodies (NAbs), with three of those animals generating bNAbs against 7 genotypes. Immune serum generated by animals with NAbs mapped to major neutralization epitopes located at residues 412 to 420 (epitope I) and antigenic region 3. VLPs that display E2 glycoproteins represent a promising vaccine platform for HCV and could be adapted to large-scale manufacturing in yeast systems. IMPORTANCE There is currently no vaccine to prevent hepatitis C virus infection, which affects more than 71 million people globally and is a leading cause of progressive liver disease, including cirrhosis and cancer. Broadly neutralizing antibodies that recognize the E2 envelope glycoprotein can protect against heterologous viral infection and correlate with viral clearance in humans. However, broadly neutralizing antibodies are difficult to generate due to conformational flexibility of the E2 protein and epitope occlusion. Here, we show that a VLP vaccine using the duck hepatitis B virus S antigen fused to HCV glycoprotein E2 assembles into virus-like particles that display epitopes recognized by broadly neutralizing antibodies and elicit such antibodies in guinea pigs. This platform represents a novel HCV vaccine candidate amenable to large-scale manufacture at low cost.


Assuntos
Hepacivirus , Hepatite C , Proteínas do Envelope Viral , Vacinas contra Hepatite Viral , Animais , Antígenos de Superfície/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Epitopos/imunologia , Cobaias , Hepacivirus/genética , Hepacivirus/imunologia , Antígenos de Superfície da Hepatite B/química , Hepatite C/imunologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
13.
Am J Hum Genet ; 109(2): 299-310, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090584

RESUMO

Spontaneous clearance of acute hepatitis C virus (HCV) infection is associated with single nucleotide polymorphisms (SNPs) on the MHC class II. We fine-mapped the MHC region in European (n = 1,600; 594 HCV clearance/1,006 HCV persistence) and African (n = 1,869; 340 HCV clearance/1,529 HCV persistence) ancestry individuals and evaluated HCV peptide binding affinity of classical alleles. In both populations, HLA-DQß1Leu26 (p valueMeta = 1.24 × 10-14) located in pocket 4 was negatively associated with HCV spontaneous clearance and HLA-DQß1Pro55 (p valueMeta = 8.23 × 10-11) located in the peptide binding region was positively associated, independently of HLA-DQß1Leu26. These two amino acids are not in linkage disequilibrium (r2 < 0.1) and explain the SNPs and classical allele associations represented by rs2647011, rs9274711, HLA-DQB1∗03:01, and HLA-DRB1∗01:01. Additionally, HCV persistence classical alleles tagged by HLA-DQß1Leu26 had fewer HCV binding epitopes and lower predicted binding affinities compared to clearance alleles (geometric mean of combined IC50 nM of persistence versus clearance; 2,321 nM versus 761.7 nM, p value = 1.35 × 10-38). In summary, MHC class II fine-mapping revealed key amino acids in HLA-DQß1 explaining allelic and SNP associations with HCV outcomes. This mechanistic advance in understanding of natural recovery and immunogenetics of HCV might set the stage for much needed enhancement and design of vaccine to promote spontaneous clearance of HCV infection.


Assuntos
Cadeias beta de HLA-DQ/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Interações Hospedeiro-Patógeno/genética , Polimorfismo de Nucleotídeo Único , Doença Aguda , Alelos , Substituição de Aminoácidos , População Negra , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Cadeias beta de HLA-DQ/imunologia , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/imunologia , Hepatite C/etnologia , Hepatite C/imunologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Leucina/imunologia , Leucina/metabolismo , Masculino , Prolina/imunologia , Prolina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Remissão Espontânea , População Branca
15.
Gastroenterology ; 162(2): 562-574, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655573

RESUMO

BACKGROUND & AIMS: Development of a prophylactic hepatitis C virus (HCV) vaccine will require accurate and reproducible measurement of neutralizing breadth of vaccine-induced antibodies. Currently available HCV panels may not adequately represent the genetic and antigenic diversity of circulating HCV strains, and the lack of standardization of these panels makes it difficult to compare neutralization results obtained in different studies. Here, we describe the selection and validation of a genetically and antigenically diverse reference panel of 15 HCV pseudoparticles (HCVpps) for neutralization assays. METHODS: We chose 75 envelope (E1E2) clones to maximize representation of natural polymorphisms observed in circulating HCV isolates, and 65 of these clones generated functional HCVpps. Neutralization sensitivity of these HCVpps varied widely. HCVpps clustered into 15 distinct groups based on patterns of relative sensitivity to 7 broadly neutralizing monoclonal antibodies. We used these data to select a final panel of 15 antigenically representative HCVpps. RESULTS: Both the 65 and 15 HCVpp panels span 4 tiers of neutralization sensitivity, and neutralizing breadth measurements for 7 broadly neutralizing monoclonal antibodies were nearly equivalent using either panel. Differences in neutralization sensitivity between HCVpps were independent of genetic distances between E1E2 clones. CONCLUSIONS: Neutralizing breadth of HCV antibodies should be defined using viruses spanning multiple tiers of neutralization sensitivity rather than panels selected solely for genetic diversity. We propose that this multitier reference panel could be adopted as a standard for the measurement of neutralizing antibody potency and breadth, facilitating meaningful comparisons of neutralization results from vaccine studies in different laboratories.


Assuntos
Variação Antigênica/imunologia , Antígenos Virais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Hepacivirus/imunologia , Testes de Neutralização/métodos , Proteínas do Envelope Viral/imunologia , Variação Antigênica/genética , Antígenos Virais/genética , Linhagem Celular Tumoral , Hepacivirus/genética , Hepatite C/prevenção & controle , Humanos , Imunogenicidade da Vacina , Reprodutibilidade dos Testes , Desenvolvimento de Vacinas , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/imunologia
16.
Ann Hepatol ; 27(1): 100542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34571265

RESUMO

INTRODUCTION AND OBJECTIVES: Implementation of a one-step strategy for diagnosis of active Hepatitis C virus (HCV) infection would encourage the early diagnosis and reduce the time to access antiviral treatments. The aim of this study was to evaluate the impact of a HCV one-step diagnosis compared to the traditional two-step protocol in terms of the time required for patients to be seen by specialists and the time taken to start antiviral treatment. MATERIAL AND METHODS: A comparative study was carried out to assess two diagnostic algorithms (one-step and two-step) for active HCV infection. Serological markers were quantified using the same serum sample to determine both anti-HCV antibodies (HCV-Ab) and HCV core antigen (HCV-cAg) by Architect i2000 SR kit. In this period, a multidisciplinary procedure was started for telematics referral of viremic patients. RESULTS: One-step approach reduced the time required for patient HCV diagnosis, referral to a specialist, access to treatment, and eliminated the loss of patients to follow-up. Significant differences were observed between one-step and two-step diagnosis methods in the time required for patients to be seen by a specialist (18 days [Interquartile range (IQR) = 14-42] versus 107 days [IQR = 62-148]) and for the initiation of treatment (54 days [IQR = 43-75] versus 200 days [IQR = 116-388]), mainly for patients with advanced fibrosis (35 days [IQR = 116-388] versus 126 days [IQR = 152-366]). CONCLUSIONS: Use of HCV-cAg has proven to be a useful tool for screening patients with active hepatitis C. The development of a multidisciplinary protocol for the communication of results improved the efficiency of the care process.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/análise , Antígenos da Hepatite C/análise , Hepatite C/diagnóstico , Telemedicina/métodos , Feminino , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Masculino
17.
Prague; Ministry of Health; Nov. 12, 2021. 298 p. tab.
Não convencional em Tcheco | BIGG - guias GRADE | ID: biblio-1451831

RESUMO

According to WHO data, 71 million people worldwide were infected with hepatitis C virus (HCV) in 2015, corresponding to a prevalence of 1%. 399,000 people die annually from complications of liver cirrhosis, including hepatocellular carcinoma. This KDP answers the following clinical questions: Diagnostics 1. Who should be tested for HCV infection? 2. Which specific populations in the Czech Republic to test? 3. How to test for active or past HCV infection (HCV exposure) ­ choice of serological test and testing strategy Treatment 4. Detection of viremic HCV infection and treatment decisions 5. How to proceed before starting treatment? 6. When to start treatment? 7. What treatment to use in adult patients? 8. What treatment to use in children and adolescents? 9. What examinations should be performed after the end of treatment? Educational activity 10. How to increase the frequency of testing and improve linkage with other care and prevention?


Podle údaju WHO bylo v roce 2015 infikováno virem hepatitidy C (HCV) na celém svete 71 milionu osob, coz odpovídá prevalenci 1 %. 399 000 osob rocne zemre v dusledku komplikací jaterní cirhózy vcetne hepatocelulárního karcinomu. Tento KDP odpovídá na následující klinické otázky: Diagnostika 1. U koho testovat HCV infekci? 2. Které specifické populace v CR testovat? 3. Jak testovat aktivní nebo prodelanou HCV infekci (expozici HCV) ­ výber sérologického testu a testovací strategie Lécba 4. Detekce viremické HCV infekce a rozhodnutí o lécbe 5. Jak postupovat pred zahájením lécby? 6. Kdy zahájit lécbu? 7. Jakou lécbu pouzít u dospelých pacientu? 8. Jakou lécbu pouzít u detí a adolescentu? 9. Jaká vysetrení provádet po ukoncení lécby? Osvetová cinnost 10. Jak zvysovat cetnost testování a zlepsovat provázanost s dalsí péci a prevencí?


Assuntos
Humanos , Hepatite C/tratamento farmacológico , Hepacivirus/imunologia , Antivirais/uso terapêutico , Hepatite C/epidemiologia , República Tcheca/epidemiologia , Hepacivirus/genética , Transmissão Vertical de Doenças Infecciosas , Genótipo
18.
Pediatr Clin North Am ; 68(6): 1321-1331, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34736592

RESUMO

Hepatitis C in children is on the rise due to perinatal transmission from infected mothers, and high-risk practices in adolescents and young adults. Prevalence remains underestimated because children at high risk are often not screened. Treatment has evolved over the past decade with the advent of new drugs, and global elimination is now possible. Direct-acting antiviral combinations are safe and effective, with sustained viral suppression rate >90%, and Food and Drug Administration-approved for children ≥3 years old. Although challenging, efficient screening and treatment of chronic hepatitis C virus early is cost-effective and reduces burden of disease and its complications.


Assuntos
Hepatite C/diagnóstico , Hepatite C/tratamento farmacológico , Adolescente , Antivirais/uso terapêutico , Criança , Pré-Escolar , Feminino , Hepacivirus/imunologia , Hepatite C/epidemiologia , Hepatite C/transmissão , Anticorpos Anti-Hepatite C/análise , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/epidemiologia , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas , Masculino , Programas de Rastreamento/métodos , Gravidez , Prevalência , Fatores de Risco , Adulto Jovem
19.
Sci Rep ; 11(1): 21856, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750487

RESUMO

Hepatitis C is a major threat to public health for which an effective treatment is available, but a prophylactic vaccine is still needed to control this disease. We designed a vaccine based on chimeric HBV-HCV envelope proteins forming subviral particles (SVPs) that induce neutralizing antibodies against HCV in vitro. Here, we aimed to increase the neutralizing potential of those antibodies, by using HBV-HCV SVPs bearing apolipoprotein E (apoE). These particles were produced by cultured stable mammalian cell clones, purified and characterized. We found that apoE was able to interact with both chimeric HBV-HCV (E1-S and E2-S) proteins, and with the wild-type HBV S protein. ApoE was also detected on the surface of purified SVPs and improved the folding of HCV envelope proteins, but its presence lowered the incorporation of E2-S protein. Immunization of New Zealand rabbits resulted in similar anti-S responses for all rabbits, whereas anti-E1/-E2 antibody titers varied according to the presence or absence of apoE. Regarding the neutralizing potential of these anti-E1/-E2 antibodies, it was higher in rabbits immunized with apoE-bearing particles. In conclusion, the association of apoE with HCV envelope proteins may be a good strategy for improving HCV vaccines based on viral envelope proteins.


Assuntos
Apolipoproteínas E/administração & dosagem , Apolipoproteínas E/imunologia , Hepacivirus/imunologia , Vírus da Hepatite B/imunologia , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/sangue , Apresentação de Antígeno/imunologia , Linhagem Celular , Feminino , Hepatite C/imunologia , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C/biossíntese , Anticorpos Anti-Hepatite C/sangue , Humanos , Evasão da Resposta Imune , Coelhos , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/imunologia
20.
Med Sci Monit Basic Res ; 27: e933692, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719666

RESUMO

BACKGROUND Because reliable epidemiological data are necessary to eliminate hepatitis B and C virus (HBV and HCV) infections, factors influencing their prevalence should be determined. This study aimed to disclose practical issues that affect the prevalence of these viral infections. MATERIAL AND METHODS All medical records with laboratory findings during 2016 to 2018 were reviewed, and all relevant data were extracted. All HBV and HCV infections were followed within these 3 years and investigated in detail. RESULTS The total number of records was 103 197, with a male to female ratio of 1: 1.4. Hepatitis B surface antigen (HBsAg) was tested in 12 934 cases, with a male to female ratio of 1: 2.6. Anti-HCV antibody (anti-HCV Ab) testing was done in 475 cases (53% male). The seroprevalence of HBV and HCV was 5.2% and 4.4%, respectively. Chronic HBV and HCV infections and their life-threatening complication, liver cancer, were highly detected in men aged 41-60 years. CONCLUSIONS HBsAg was highly screened in women owing to the nationwide implementation of the universal HBsAg screening in pregnant women to prevent vertical transmission. Screening for anti-HCV Ab was neglected, probably due to lack of vaccine and high costs of anti-HCV drugs, which most people in low- to middle-income countries generally cannot afford. Local practices under national health care policies and limited budget and resources can cause underestimation of the prevalence of the HBV and HCV infections and persistent transmission of these viruses owing to unidentified cases.


Assuntos
Atenção à Saúde , Política de Saúde , Hepatite B/epidemiologia , Hepatite C/epidemiologia , Adulto , Feminino , Hepacivirus/imunologia , Antígenos de Superfície da Hepatite B , Anticorpos Anti-Hepatite C , Humanos , Masculino , Pessoa de Meia-Idade , Gravidez , Prevalência , Estudos Soroepidemiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...